If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x^2=196
We move all terms to the left:
2x^2+x^2-(196)=0
We add all the numbers together, and all the variables
3x^2-196=0
a = 3; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·3·(-196)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{3}}{2*3}=\frac{0-28\sqrt{3}}{6} =-\frac{28\sqrt{3}}{6} =-\frac{14\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{3}}{2*3}=\frac{0+28\sqrt{3}}{6} =\frac{28\sqrt{3}}{6} =\frac{14\sqrt{3}}{3} $
| -22z+27z-48z+43z-12z=12 | | 0.2b+2=0.5b+11 | | 2x-16=6(x-6) | | 9x+29=-5x | | 54x+3=-24 | | 3-3s=-9 | | -2=x/5+4 | | (M-2)-4=8-2(m-4) | | 12t+t+10=23 | | 30=6x+18 | | 12x*5+75=9*5 | | 11-(9-2x)=-(12x+11) | | -9(n+3)=-6(n+5) | | 19q-7q+4q-10q-q-2=13 | | -7x+5(x-6)=-24 | | 57t+1/3t-27=17 | | 9x+75=12x | | ∣x−3∣+4=9 | | 12x+75=9x | | 3(4y+9)= 3939 | | 16+9w=8w | | 2.33333333333x+30=5.125x | | 2x+126=4x+192 | | -2r+6r=-6(1-6r)-5(6+7r) | | s+31/2+20s=65 | | -4r+2r=9r+207 | | 1/3(x+3)+2=6.5x | | 12u=63+3u | | 3h^2+48h-2160=0 | | 9+10t=9-9t+11t | | 1/5(10z-15)=-3z+4+5z | | 38=49-x |